Theorem. For any sets A, B, and C, we have

$$
(A \cup B)-C=(A-C) \cup(B-C)
$$

Proof. Let A, B, and C be sets. To prove our theorem, we will show that $(A \cup B)-C \subseteq(A-C) \cup(B-C)$ and $(A-C) \cup(B-C) \subseteq(A \cup B)-C$. (1) To show that $(A \cup B)-C \subseteq(A-C) \cup(B-C)$, let $x \in(A \cup B)-C$. Then $x \in A \cup B$ and $x \notin C$. Since $x \in A \cup B$, we have $x \in A$ or $x \in B$. We consider these two cases separately.
(a) Suppose $x \in A$. Then, since $x \notin C$, we have $x \in A-C$. Then certainly $x \in A-C$ or $x \in B-C$. So, by definition of union, $x \in(A-C) \cup(B-C)$.
(b) Suppose $x \in B$. Then, since $x \notin C$, we have $x \in B-C$. Then certainly $x \in A-C$ or $x \in B-C$. So, by definition of union, $x \in(A-C) \cup(B-C)$.

In either case, we have $x \in(A-C) \cup(B-C)$. So

$$
(A \cup B)-C \subseteq(A-C) \cup(B-C)
$$

(2) To show that $(A-C) \cup(B-C) \subseteq(A \cup B)-C$, let $x \in(A-C) \cup(B-C)$. Then $x \in A-C$ or $x \in B-C$. We consider these two cases separately.
(a) Suppose $x \in A-C$. Then $x \in A$ and $x \notin C$. Since $x \in A$, certainly $x \in A$ or $x \in B$, so $x \in A \cup B$, by definition of union.
But then, since $x \notin C$, we have $x \in(A \cup B)-C$.
(b) Suppose $x \in B-C$. Then $x \in B$ and $x \notin C$. Since $x \in B$, certainly $x \in A$ or $x \in B$, so $x \in A \cup B$, by definition of union.
But then, since $x \notin C$, we have $x \in(A \cup B)-C$.
In either case, we have $x \in(A \cup B)-C$. So

$$
(A-C) \cup(B-C) \subseteq(A \cup B)-C
$$

Since
$(A \cup B)-C \subseteq(A-C) \cup(B-C)$ and $(A-C) \cup(B-C) \subseteq(A \cup B)-C$, it follows that

$$
(A \cup B)-C=(A-C) \cup(B-C)
$$

