Circadian (meaning "every-24-hour") rhythms are produced in fruit flies by the interactions of messenger RNA, or mRNA, denoted M, with certain protein monomers, denoted P_{1}, and protein dimers, denoted P_{2}. (A monomer is a basic protein building block; a dimer is composed of two monomers.) These interactions proceed according to the following assumptions.

- In the absence of proteins, mRNA grows at a constant rate. However, this rate is inhibited by the presence of dimers - the larger the concentration of dimers, the more slowly mRNA grows.
- mRNA degrades (decays) at a rate proportional to the amount of mRNA present.
- Protein monomers are produced at a rate proportional to the amount of mRNA present.
- Through a process called proteolysis, monomers decay at a rate proportional to the amount of monomers present, and dimers decay at a rate proportional to the amount of dimers present.
- Through a process called phosphorylation, monomers decay - or, technically, are inactivated upon combining with phosphates. The larger the concentration of dimers, compared to that of monomers, the more slowly monomers decay.
- Dimers are also inactivated through phosphorylation. Here, the larger the concentration of monomers, compared to that of dimers, the more slowly dimers decay.
- A dimer can split to form two monomers. This happens, at any given point in time, at a rate proportional to the concentration of dimers at that point.
- Two monomers can join to form a dimer. This happens, at any given point in time, at a rate proportional to the number of monomer-to-monomer reactions possible at that point.

Put the cards together to form a system of differential equations modeling the above interactions. (All lower-case letters, except for t, denote positive parameters.)

$-\ell P_{2}$
$\frac{d P_{1}}{d t}=$

Answer key

$$
\begin{gathered}
\frac{d M}{d t}=+\frac{a}{1+b P_{2}^{2}}-c M \\
\frac{d P_{1}}{d t}=+p M-\frac{e P_{1}}{f+P_{1}+g P_{2}}-h P_{1}-2 k P_{1}^{2}+2 \ell P_{2} \\
\frac{d P_{2}}{d t}=-\frac{m P_{2}}{f+P_{1}+g P_{2}}-n P_{2}+k P_{1}^{2}-\ell P_{2}
\end{gathered}
$$

